
Java Serialization
Facts and Fallacies

© 2013, Roman Elizarov, Devexperts

Serialization

… is the process of translating data structures or object

state into a format that can be stored (for example, in

a file or memory buffer, or transmitted across a network

connection link) and resurrected later in the same or

another computer environment.
 -- WIkipedia

Object Bytes Network/Storage

Distributed system use-case

• Transfer data between cluster nodes or between servers and

clients

• Serialization is a key technology behind any RPC/RMI

• Serialization if often used for storage, but then data transfer is still

part of the picture

Java serialization facility (key facts)

• Had appeared in 1997 as part of JDK 1.1 release

• Uses java.io.Serializable as a marker interface

• Consists of java.io.ObjectInputStream/ObjectOutputStream with

related classes and interfaces

• Has “Java Object Serialization Specification” that documents

both API and object serialization stream protocol

• Is part of any Java platform (even Android has it)

• Somehow has a lot of myths around it

It is a joke

 … and the only JEP joke (!)

 … and it has a big grain of truth:

 There are a lot of folk myths about serialization

Kryo

Google protobuf

Apache Avro

JBoss serialization Protostuff

Jackson

Coherence POF

JAXB

Gson

Json-lib

FLEXJSON

GridGain serialization
fast-serialization

Hessian

Burlap

jserial

quickser

EclipseLink MOXy

java.beans.XMLEncoder/XMLDecoder

Hadoop Writable

svenson

Hazelcast Portable

XStream

msgpack wobly
Apache Thrift

Javolution XML

jsonij

Obvious fact of live

Real hackers write everything from scratch

Every mature appserver/framework/cache/eventbus/soa/rpc/db/etc

must have its own serialization that is better than everybody else’s

How to choose a serialization lib?

• Cross-language or Java-only

• Binary or text (XML/JSON/other) format

• Custom or automatic object-to-serialized format mapping

• Needs format description/mapping/annotation or not

• Writes object scheme (e.g. field names) with each object, once per

request, once per session, never at all, or some mixed approach

• Writes object fields or bean properties

• Performance

- CPU consumption to serialize/deserialize

- Network consumption (bytes per object)

Java built-in serialization lib?

• Cross-language or Java-only

• Binary or text (XML/JSON/other) format

• Custom or automatic object-to-serialized format mapping

• Needs format description/mapping/annotation or not

• Writes object scheme (e.g. field names) with each object, once per

request, once per session, never at all, or some mixed approach

• Writes object fields or bean properties

• Performance

- CPU consumption to serialize/deserialize

- Network consumption (bytes per object)

Serious serialization lib choice diagram

Cross-platform

data transfer?

Java to JS?

YES

Jackson/gson/etc

do further

research

Use built-in Java

Serialization

Do you have

problems with

it?

YES NO

YES NO

NO

Serialization myth #1

I have this framework XYZ…

… it has really simple and fast serialization

All you have to do is to implement this interface! Easy!

I’ve tested it! It is really fast!

It outperforms everything else I’ve tried!

/* This is almost actual real-life conversation.

 * Names changed */

In fact this is corollary to “Obvious fact of life”

• This does not solve the most complex serialization problems

- You can implement java.io.Externalizable if you are up to writing a

custom serialization code for each object.

• Maintenance cost/efforts are often underestimated

- How you are planning to evolve you system? Add new fields?

Classes?

• What will keep you from forgetting to read/write them?

• Ah… yes, you write a lot of extra tests in addition to writing your

write/read methods to make sure your serialization works

- How about on-the-wire compatibility of old code and new one?

• But I deploy all of my system with a new version at once!

• But how do you work with it during development?

So what about this code evolution?

w
rite

read

g
o
t

serialVersionUID

• serialVersionUID = crazy hash of your class

- If you change your class -> serialVersionUID change -> incompatible

• But you can set serialVersionUID as a “private static final long”

field in your class to fix it.

• With a fixed serialVersionUID java serialization supports:

- Adding/removing fields without any additional hurdles and annotations

- Moving fields around in class definition

- Extracting/inlining super-classes (but without moving serializable fields

up/down class hierarchy).

• It basically means you can evolve your class at will, just a you

would do with key-value map in json/other-untyped-system

serialver

• That’s the tool to compute serialVersionUID as the crazy hash of

your class

- You only need it when your class is “in the wild” w/o explicitly

assigned serialVersionUID and you want to be backwards

compatible with that version of it

• DO NOT USE serialver for freshly created classes

- It is a pseudo random number that serves no purpose, but to make

your gzipped class files and gzipped serial files larger

- Just set serialVersionUID = 0

• It is no worse, but better than other values

So what about this code evolution (2)?

w
rie

read g
o
t

symbol – as written

quantity – as written

price – as written

orderType – null
Profit! It works the other way around, too!

What if I want to make my class incompatible?

• You have two choices

- serialVersionUID++

- Rename class

• So, having serialVersionUID in a modern serialization framework is

an optional feature

- They just did not have refactorings back then in 1996, so renaming a

class was not an option for them

- They chose a default of “your changes break serialization” and force

you to explicitly declare serialVersionUID if you want “your changes

are backwards compatible”

• I would have preferred the other default, but having to manually

add serialVersionUID is a small price to pay for a serialization

facility that you have out-of-the box in Java.

Complex changes made compatible

• Java serialization has a bunch of features to support radical

evolution of serializable classes in backwards-compatible way:

- writeReplace/readResolve

• Lets you migrate your code to a completely new class, but still use

the old class for serialization.

- putFields/writeFields/readFields

Lets you complete redo the fields of the object, but still be compatible

with the old set of fields for serialization.

It really helps if you are working on, evolving,

improving, and refactoring really big projects

Serialization myth #2

In practice

• It really matters when very verbose text formats like XML are used

in a combination with not-so-fast serializer implementations

• Most binary formats are fast and compact enough, so that they do

not constitute a bottleneck in the system

- Data is usually expensive to acquire (compute, fetch from db, etc)

- Otherwise (if data is cache) and the only action of the system is to

retrieve it from cache, then cache serialized data

Popular myth #3

© Stack Overflow authors, emphasis is mine

The source of this myth is a popular way to

benchmark serialization performance

https://github.com/eishay/jvm-serializers/blob/master/tpc/src/serializers/JavaBuiltIn.java

https://github.com/eishay/jvm-serializers/blob/master/tpc/src/serializers/JavaBuiltIn.java
https://github.com/eishay/jvm-serializers/blob/master/tpc/src/serializers/JavaBuiltIn.java
https://github.com/eishay/jvm-serializers/blob/master/tpc/src/serializers/JavaBuiltIn.java

The real fact about serialization performance

• ObjectOutputStream/ObjectInputStream are expensive to create

- e.g. slow

• Reuse oos/ois instances

- It is easy when you write a single stream of values

• Just keep doing writeObject(!)

• That is what it was designed for

- It is slightly tricky if you want to optimize it for one-of tasks

TBD: Reuse code

TBD: More on performance

We create professional financial software for

Brokerage and Exchanges since 2002

46000

Users on-line in one day

305400

Sent orders in one day

99.99%

Our software index
of trouble-free operation

365 7 24

We support our products
around-the-clock 350

Peoples in our team

Headquarters

197110, 10/1 Barochnaya st.

Saint Petersburg, Russia

+7 812 438 16 26

mail@devexperts.com

www.devexperts.com

http://www.devexperts.com/

Contact me by email: elizarov at devexperts.com

 Read my blog: http://elizarov.livejournal.com/

http://elizarov.livejournal.com/

