
Tests
Test

Paweł L. Lipiński

or how to write tests so that
they serve you well

whoami

• ~16 years as a developer, ~12 years in Java

• programming, consulting, training,
auditing, architecturing, coaching,
team leading

• Formal & agile methods

• currently: developer, coach, ceo @

Cost of change
grows exponentially with time

0

250

500

750

1000

Reqs Analysis Design Coding Testing Prod

Barry Boehm

Ideas are cheaper to change than code.

Bugs found early are cheaper to fix.

Does cost of change really
grow exponentially with time?

0

5

10

15

20

0 1 2 3 4 5 6

Postponing decisions and

reducing feedback cycles flattens the curve.

Ariane 5 flight 501
10 years of work
5.000.000.000 �€

http://www.dutchspace.nl/uploadedImages/Products_and_Services/Launchers/Ariane%205%20Launch%20512%20-%20ESA.JPG

http://www.capcomespace.net/dossiers/espace_europeen/ariane/ariane5/AR501/V88%20explosion%2003.jpg

Test-Driven Development

A technique of software development
based on repeating a short cycle:

Red

Green

Refactor

make the test pass

improve the design and code readability

write new, unpassing test

A technique of software development
based on repeating a short cycle:

Test-Driven Development

By continuously improving the design of code, we make it
easier and easier to work with.
This is in sharp contrast to what typically happens: little
refactoring and a great deal of attention paid to expediently
adding new features.
If you get into the hygienic habit of refactoring continuously,
you'll find that it is easier to extend and maintain code.

Joshua Kerievsky,
Refactoring to Patterns

Acceptable quality

0

25

50

75

100

0 1 2 3 4 5

0

25

50

75

100

0 1 2 3 4 5

Traditional development

TDD

http://flagstaffclimbing.com/wp-content/themes/climbing/images/flag-climbing-bg.jpg

http://flagstaffclimbing.com/wp-content/themes/climbing/images/flag-climbing-bg.jpg
http://flagstaffclimbing.com/wp-content/themes/climbing/images/flag-climbing-bg.jpg

Ok, but... how to make it stick?

Do it with the whole team.

Get a coach to spend time with your

team, on your code.

Learn it in pairs
Try kata trainings - it will build a

habit of test-driving in your head.

Peer-review

your test code

Tests

What do tests give us?

• awareness of what is supposed to be written

• feeling of safety while refactoring

• feeling of safety while changing code

• increase in development speed

• executable documentation

So what’s the problem?

• Whenever you change something -
they stop working

• They become harder
and harder to maintain

• They soon start to look like this

• If there’s many of them, it’s hard to know where to look to learn something
about the system

Conventions

• coherent naming of test classes

• coherent naming of tests

• test classes’ names describing behaviour not the
class’ name

• test methods’ names should describe test case,
not method being tested

• code conventions

Comments

• if you feel you must comment, something’s wrong
with your code

• tests should document code, so they must be
SUPERCOMPREHENSIBLE

• though comments are useful sometimes...

// given

// when

// then

Formatting

• coherent formatting throughout the codebase

• separation of logical fragments

• eyes used to it = quicker understanding

Given (test setup)

• DRY (setup methods should be business-like)

• setup method COMPREHENSIBLE

• @Before vs. explicite call

• One test, one exception

• NEVER:

@Test(expected = Exception.class)
Use only CONCRETE, UNIQUE exception

• try / catch

Error handling

@Rule
public ExpectedException throwing =
 ExpectedException.none();
...
...

// when
throwing.expect(ParseException.class);
parser.parse(text);
// then exception is thrown

import static com.googlecode.catchexception.CatchException.*;
import static com.googlecode.catchexception.apis.CatchExceptionBdd.*;

// given: an empty list
List myList = new ArrayList();

// when: we try to get the first element of the list
when(myList).get(1);

// then: we expect an IndexOutOfBoundsException
then(caughtException())
 .isInstanceOf(IndexOutOfBoundsException.class)
 .hasMessage("Index: 1, Size: 0")
 .hasNoCause();

Error handling

https://code.google.com/p/catch-exception/

https://code.google.com/p/catch-exception/
https://code.google.com/p/catch-exception/

• define behaviours not tests

• behaviours constitute a functional spec of the application

• behaviours should be worked upon by business people together with
developers

• focus on why the code should exist

• naming in code is the same as names used by the business people
(ubiquitous language)

Behaviour Driven Development

Defining behaviour

As a conference attendee I want to get a restration status after
signing up for a conference so that I know if the registration went fine:

Given a conference „Joker”

When I try to register to it and the registration is successful

Then I get a confirmation message: „You are registered to Joker.
An email with details has been sent to you.”

Given a conference „Joker”

When I try to register to it but there are no free places

Then I get a message: „Sorry. No free places left. Try the next
year!”

Examples, not Tests

• BDD helps to think about objects from the perspective of their behaviours,
so the code is more object-oriented

• examples help you create a „mental” model of the system

• test class shows examples of use of a functionality

• test code is an example of behaviour

• test code is also an example of use

BDD naming

public class AddingBooksToLibraryTest {
@Mock

	 private BookRepository bookRepository;

	 @Test
	 public void shouldEnableAddingNewBooks() {
	 	 // given
	 	 Library library = new Library(bookRepository);
	 	 Book book = new Book("Children from Bullerbyn");

	 	 // when
	 	 library.add(book);

	 	 // then
	 	 assertThat(library.size()).is(1);

verify(bookRepository).save(book);
	 }
}

Story, Scenario

BDD rules

• test names should be sentences

• simple constant template of the sentence helps you focus in the test on one
thing

• understandable test name helps when the test fails

• test are examples - think about them not as a means for future verification,
but as a documentation of behaviour

Tumbler

http://tumbler-glass.googlecode.com

http://tumbler-glass.googlecode.com
http://tumbler-glass.googlecode.com

How to organize all
these tests

• Tests in the same packages as SUT
vs. separately

• Tests named by the functionality
vs. tests named by tested classes

• Tests’ speed

unit

integration

acceptance

clicking

• Test levels

Test smells

• Long setup - lack of factory method, or perhaps
a problem with the structure of created objects?

• Long tests - perhaps you’re testing more than
one behaviour at a time?

• Many assertions - doesn’t the tested method
have too many responsibilities?

• Too many test methods in a test class - class
under test has too many responsibilities?

Maintainable tests

• Reuse assertions, create „business” assertions

• Reuse object construction methods - don’t be sensitive to changes of
constructors

• Reuse test setup

• Tests should not depend on environment and order of execution

• Avoid many assertions - when the first one fails, others are not executed
(they could’ve give you a clue about possible reasons)

• Separate assertion from the action to increase readability (or better use
given/when/then pattern)

• Use variables to pass and verify values in tests

• Remove tests ONLY when you remove a functionality or when tests’
responsibilities overlap

Pair programming

http://static.guim.co.uk/sys-images/Guardian/Pix/pictures/2011/10/25/1319565246130/Russian-President-Dmitry--007.jpg

http://static.guim.co.uk/sys-images/Guardian/Pix/pictures/2011/10/25/1319565246130/Russian-President-Dmitry--007.jpg
http://static.guim.co.uk/sys-images/Guardian/Pix/pictures/2011/10/25/1319565246130/Russian-President-Dmitry--007.jpg

The biggest challenge for me personally was essentially mourning for
the death of “Programmer Man”.

http://www.nomachetejuggling.com/2009/02/21/i-love-pair-programming/

Programmer Man is how I think of myself when I’ve got my
headphones in, speed metal blaring in my ears, and I’m coding like a
motherfucker. My fingers can’t keep up with my brain. I’m In The
Zone.

For most of my career, this image is what I’ve considered to be the
zenith. When I come home and was in Programmer Man Mode most of
the day, I feel like I’ve had a good day.

Pair Programming undeniably killed Programmer Man. This
was a tough adjustment, since I’ve considered that mode to be my
favorite for so long. I now see, however, that Programmer Man was,
without me knowing it, Technical Debt Man.

http://www.nomachetejuggling.com/2009/02/21/i-love-pair-programming/
http://www.nomachetejuggling.com/2009/02/21/i-love-pair-programming/

Don’t be afraid of pair-programming - you’re not as good as
you think, but you’re not as bad as you fear.
Ron Jeffries

Ok, but how to start doing it?

Comfortable position

Do harder bits in pairs first

Do it the right way - one person codes,

the other gets the bigger picture.

Get a shower.

Switch pairs.

And how to make it stick?

2 mice

2 keyboards

Check which setting fits you best.

Initially everybody MUST pair. Make it

optional once you know it well.

http://www.nomachetejuggling.com/2011/08/25/mechanics-of-good-pairing/

http://www.nomachetejuggling.com/2011/08/25/mechanics-of-good-pairing/
http://www.nomachetejuggling.com/2011/08/25/mechanics-of-good-pairing/

Ok, but how to start doing it?

 Jenkins cruise-control

 gump Team Foundation Server

 TeamCity Continuum Hudson
 Bamboo

Check-in often... clean builds.
Never leave the office

if the build is broken.

Time-box fixing build

revert if needed.
You’re responsible if your

build broke something.

Don’t comment out

failing tests...

And how to make it stick?

Sonar

Lots of tests.

Integration tests.

Notifications which piss you off.

End-to-end tests.

Keep your tests fast.

Fancy info radiator.

Optimize your building process.

pawel.lipinski@pragmatists.pl

Thank you!

All pictures were used exclusively to set the presentation context and advertise the original book.

mailto:pawel.lipinski@pragmatists.pl
mailto:pawel.lipinski@pragmatists.pl

