: 206 o

in Series 3 ’ e23ss ssss oo

Robert C. Martin Serie S N R L
..........

PRAGMATISTS

Foreword by James O. Coplien Pawe* L L|p|hSk|

e —————
e —— —

or how to write tests so that
they serve you well

whoami

* ~16 years as a developer, ~12 years in Java

e programming, consulting, training,
auditing, architecturing, coaching,
team leading

e Formal & agile methods $esssssesases

e currently: developer, coach, ce0 @ PRAGMATISTS

Cost of change
grows exponentially with time

Barry Boehm

|deas are cheaper to change than code.
Bugs found early are cheaper to fix.

Regs Analysis Design Coding Testing Prod

Does cost of change really
grow exponentially with time?

Postponing decisions and
reducing feedback cycles flattens the curve.

Ariane 5 flight 501
10 years of work
5.000.000.000 €

http://www.dutchspace.nl/uploadedimages/Products_and_Services/Launchers/Ariane%205%20Launch%20512%20-%20ESA.JPG

http://www.capcomespace.net/dossiers/espace_europeen/ariane/ariane5/AR501/V88%20explosion%2003.jpg

. Q035 - i 6mae Aas occumed - Mosila Frefox
| le Edt Yoew Wistory Bockmarks Tools Help

@ $ -G U A '~‘i ﬂv Fmrnm;'.onlpncmn«ue.vm-msmsodmoon';mwmpw -
1+ [Glougo~ CiMessage (0) «sReadlater | Urvead | Recent 3FAddafiter JOptions (] Capture

@ Disablev S Cooldesv | JCSSv “images v O Information v S/ Ogline~ | IResizev JToolsv Options v

DIOST-24.. P [#ST-28.. P [#)ST-24.. P Swdosy.. © Oops. QO QHowtob.. \Apachef.. P [#STRM-.. \ MavenR.. [indexof /.. [f Sonatype... 11 Index of /.. @ CAJST-2...

¢ Bookmark v [RHighight v OComment v g Sendv

TIForms v Miscellaneous v 42 View Source v

Uploaded .

Oops - an error has occurred

| System Error

A system error has occurred.

Please try submitting this problem via the Support Request Page

Otherwise, please create a support issue on our support system at hiip support.atisssian.com with the following information:
1. a description of your problem

2. cut & paste the error and system information found below

3. attach the application server log file (/data/jirastudio/jira/log/atiassian-jira.log)

Cause:
Java.lang.NullPointerException

Javs. lang MullPointerficception

at com.atlassian, Jira. studio. 1eparter.Studiolnport. deShowuris(Studiolngort. java 52)

a1 s reflect. MativeMethodiccessoringl tavobeO(Native Methed)

81 s reflect MativedethodiccensorTapl invoke (NativeMethodiccossarTapl, Java: 35)

a1 sun reflect. Delegatingethodbccessoringl. 1nvoke (DelegatingMethodiccessoringl. Java: 25)

a1 Javs lang reflect Method, snvoke (Methed. Java:507)

at webwork util. Inpectiontti\sgDefaultInjectionIep) . snvoke (InjectionUtals, Java: 70)
’ a1 webwork util. Injectionnils. invoke (Injectioninils. java:56)
| 81 webwork acticn. ActionSuppert invokeConnand (ACtionSupport. java 4X3)
a1 webwork action. ACtLonSupport execute (ActionSuppert. Java:157)
ot com atlassian, Jire. acticn. JirsActicnSupport erecute(iraketionfpport. Javs:53)
at com.atlassian, Jira. studio.ieparter.Studiolnport. execute (Studioleport, Java &2)
a1 webwork dispatcher GenericDispatcher. enecutedction (Genersclaspatcher. Java:139)
81 com atlansian, jirs, web, dispatcher JirsServietDispatcher service (JiraServietDisgatcher Java:i7l)
a1 Javax serviat http HetpSarviet service (HttpServiet. Java: 803)
org.apache cataling. core. ApplicatienFilterChain. tatermaldofilter (ApplicaticaFi 1 terChain. Java: 268)
#t org.apache. cataling core, Applicaticn®iterChain. dofilter(AgplicationFi 1 terChain, Java 188)
a1 com_ atlassian. core. TLlters MeaderSanitisingFiliter doFiliter (MeaderSanitisingFilter. Java: &4)
org. apache cataling core, Application®i 1terChain iaternalOorilter (ApplicationPi 1terChain. jave: 21%)
a1 org apache catalina . core. MpplicatieonFi terChain deFilter{ipgplicationFilterChalin, Java: 188)
ot com atlassian plogin. serviet. filter. IteratingPiliterChatn. dofLlter (IteratingFilterChaln. Java: 45)
com.atlassian, plegin, serviet, filter, ServietFil terModuleCantainerfalter dofal ter (ServietFa | tardoduleContainerfalter, Java 1 %5)
at com atlassian. plugin. serviet. filter. ServietFilterModuleContainerFilter deFilter (ServietFil termoduleContainerFilter. Java: 41)
org. apache cataling core, ApplicationPi 1terChain. iaternalOorilter (ApplicaticnPilterChain. java: 219%)
at org apache cataling . core MpplicationFi iterOhain deFilter{ipgplicationFilterChalin, Java: 188)
com atlassian, Jira. wed T11ters accessleg. AccesslogFiiter. axecuteRegquest (Accessiogiiiter. Java:99)
com.atlassian, Jira. web, filters accenslog. Accessloghilter. dofilter (AccesslogFil ter, Jave 83)

at org. apache catalina. core. ApplicatienFi i terChain. iatermalDoFi Lter (ApplicationFi 1terChatn. Java: 20S)
‘ a1 org. apache cataling core, ApplicaticnPi1terChain dofilter{AgplicationfslterChain, Jave: 108)

1
{ Stack Trace: [0]
\

)
% com atlassian, Jira. security xsrf NsriTobendédi tionRagquestriiter dofilter (NsriTobeniddi tionRaquestFiiter. Java %0)
At org.apache. cataling. core. ApplicatieaFiiterChain. tatemalloFilter (ApplicatienFilterChatn. Java: 215)
org.apache. cataling, core, Applicaticn®i | terChain. dofil ter{ipplicationFs 1 terChain, Jave: 108)
at con opeasymphony . adule sitesesh. filter.PageFilter parsePage (PageFiiter. Java:119)

S0 som Anansennbany sadile s tamadh il var Buaali T rar Al T rar sl T rar Seve S8

Ocps -0« 0 o - ~

Test-Driven Development

A technigue of software development
based on repeating a short cycle:

Red

Green

Refactor

Test-Driven Development

tware development

A technique of so
g a short cycle:

based on repeatir

write new, unpassing test

Rename, .
Move, .,
Change Methog Segnatur

- .
Extract Local Variable. ., \ %:f

Extract Constam

| Inline.., \"'

Convert Local Variable 10 Field... ~

Extract Interface
Extract Superctass

::;ts,:pmmmf"msm . N
roee Mprove the design and code readability
xtract Class..,

Introduce Paramerer Object
Introduce Parameter.
| Generalize Declared Type.
- lnfc{ Ceneric Type Argumo';m

By continuously improving the design of code, we make it
easier and easier to work with.

This Is in sharp contrast to what typically happens: little
refactoring and a great deal of attention paid to expediently
aaaing new features.

ctoring continuously,
Altain code.

If you get into the hygienic halise
you'll find that it is easier t@€xtend and

Joshua Kerievsky,
Refactoring to Patterns

&

clean hands
save lives

Acceptable quality

Traditional development

100

75

50

25 100 O,

0 | | | | | 75
0 o000
25
0 -

TDD

http://flagstaffclimbing.com/wp-content/themes/climbing/images/flag-climbing-bg.j

http://flagstaffclimbing.com/wp-content/themes/climbing/images/flag-climbing-bg.jpg
http://flagstaffclimbing.com/wp-content/themes/climbing/images/flag-climbing-bg.jpg

Ok, but... how to make 1t stick?

Do it with the whole team.

Get a coach to spend time with your
team, on your code.

Try kata trainings - it will build a

Learn It in pairs habit of test-driving in your head.

Peer-review
your test code

What do tests give us?

e awareness of what is supposed to be written
e feeling of safety while refactoring

e feeling of safety while changing code

® |ncrease in development speed

e executable documentation

So what's the problem?

e \Vhenever you change something -
they stop working

e T[hey become harder
and harder to maintain

e [hey soon start to look like this

e |f there’s many of them, it’s hard to know where to look to learn something
about the system

Conventions

e coherent naming of test classes
e coherent naming of tests

e test classes’ names describing behaviour not the
class’ name

e test methods’ names should describe test case,
not method being tested

® code conventions

Comments

e |f you feel you must comment, something’s wrong
with your code

e tests should document code, so they must be
SUPERCOMPREHENSIBLE

e though comments are useful sometimes...

// given

// when

// then

Formatting

e coherent formatting throughout the codebase
e separation of logical fragments

® g¢yes used to it = quicker understanding

@Test

public void shouldFindStorylfStartsWithFeature() {
// given
String expectedStoryName = "one";
text = "Feature:" + expectedStoryName;

// when
loader.loadFrom(text);

// then
assertThat(nameOfFirstStory(), is(expectedStoryName));

Given (test setup

e DRY (setup methods should be business-like

e setup method COMPREHENSIBLE

® @Before vs. explicite call

Error handling

iiiiii

e (One test, one exception

o NEVER:

@Test (expected = Exception.class)
Use only CONCRETE, UNIQUE exception

e try/catch

@Rule

public ExpectedException throwing =
ExpectedException.none();

// when

throwing.expect(ParseException.class);
parser.parse(text);

// then exception is thrown

Error handling

import static com.googlecode.catchexception.CatchException.*;
import static com.googlecode.catchexception.apis.CatchExceptionBdd. *;

// given: an empty list
List myList = new ArraylList();

// when: we try to get the first element of the list
when(myList).get(1);

// then: we expect an IndexOutOfBoundsException
then(caughtException())
.1sInstanceOf (IndexOutOfBoundsException.class)
.hasMessage("Index: 1, Size: 0")
.hasNoCause();

https://code.google.com/p/catch-exception/

https://code.google.com/p/catch-exception/
https://code.google.com/p/catch-exception/

e define behaviours not tests

e pehaviours constitute a functional spec of the application

e pehaviours should be worked upon by business people together with
developers

e focus on why the code should exist

e naming in code is the same as names used by the business people
(ubiquitous language)

Defining behaviour

As a conference attendee | want to get a restration status after
sighing up for a conference so that | know if the registration went fine:

Given a conference ,,Joker”
When | try to register to it and the registration is successful

Then | get a confirmation message: ,,You are registered to Joker.
An email with details has been sent to you.”

Given a conference ,,Joker”

When | try to register to it but there are no free places

Then | get a message: ,,Sorry. No free places left. Try the next
year!”

Examples, not Tests

e BDD helps to think about objects from the perspective of their behaviours,
SO the code is more object-oriented

e cxamples help you create a ,mental” model of the system
e test class shows examples of use of a functionality
e test code is an example of behaviour

e test code is also an example of use

BDD naming

Story, Scenario

public class AddingBooksTolLibraryTest {

@Mock
private BookRepository bookRepository;

@Test

public void shouldEnableAddingNewBooks() {
// given
Library library = new Library(bookRepository);
Book book = new Book("Children from Bullerbyn");

// when
library.add(book);

// then
assertThat(library.size()).1s(1);

verify(bookRepository).save(book);

BDD rules

e test names should be sentences

e simple constant template of the sentence helps you focus in the test on one
thing

e understandable test name helps when the test fails

e test are examples - think about them not as a means for future verification,
but as a documentation of behaviour

Tumbler

@ Chrome Plik Edycja Widok Historia Zaktadki Okno Pomoc L O @™y BT om G222 $r.1741:13 Q

®eno

#) tumbler-glass - Project | x

() code.google.com/p/tumbler-glass/

u tumbler-glass

Behaviour-Driven Development tool for Java

Project Home Downloads Wiki Issues Source Administer
Summary | Updates | People

News

* Aug 13, 2010: Tumbler 0.3.0 released, see ReleaseNotes
* May 24, 2010: Tumbler 0.2.2 released, see ReleaseNotes
* May 18, 2010: Tumbler 0.2.1 is now in Maven central repository. See IntroductionForDevelopers for details.

Tumbler

PRAGMATISTS

What is it?

What is the first thing you do when you want to make your favourite drink? Prepare a proper glass. It will lead the process of creating a tasty and
good-looking drink by defining amounts of its ingredients and how they should be placed for the drink to look nice.

Tumbler is a coding-by-example library which will help you do the same with your code. It will lead the way you think about and build your code, as
well as help you remember what should be implemented. It supports you in the ‘think' phase if you do TDD (or rather BDD), can help your

discussions with business people (they like examples) and additionally you'll be able to impress your customer with always up-to-date reports of what
has already been implemented (and whether it works or not), and what's still pending.

How to use it?

Depending who you are, your usage style will be different. If you're on the business/requirements side, see IntroductionForBusinessPeople. If you're
a developer, check IntroductionForDevelopers and be sure to see Tumbler documentation!

-Documentation

lipinski.pawel@gmail.com | My favorites v | Profile | Sign out WAP

Search projects

Star this project

Activity: «1! High

Code license:

Apache License 2.0

Labels:
TDD, BDD, coding-by-example, java,
test, testing, example

Featured downloads:

tumbler-0.3.0.jar
Show all » JL

Featured wiki pages:
IntroductionForBusinessPeople

IntroductionForDevelopers
ReleaseNotes
Show all »

Blogs:
Studio Pragmatists

External links:
Tumbler's documentation
Tumber's Javadoc
Pragmatists

Feeds:
Project feeds

Owners:

doincki ozl

http://tumbler-glass.googlecode.com

http://tumbler-glass.googlecode.com
http://tumbler-glass.googlecode.com

— 5 ™
Story: Library @® import org.junit.¥;[]
Scenario: lend an existing book from the library

Given 'Children from Bullerbyn' book in the library @RunWith(TumblerRunner.class)
When this book is borrowed from the library @Story("Library")
Then the library doesn't contain it anymore. public class LibraryScenarios {
= public LibraryScenarios() {
Scenario: not lend a nonexisting book from the library Narrative("As a library user, " +

Given empty library
When we try to borrow 'Children from Bullerbyn' from the library

"In order to borrow a book, +
"I want librarian to give me that book, " +

Then the library doesn't let it to be borrowed. ﬁ "So that I can take it home");
Scenario: accept back a book previously borrowed }

Given 'Children from Bullerbyn' has been borrowed from the library i)

When this book is given back = @Scenario(pending = true)

Then the library contains it. public void shouldLendAnExistingBookFromThelLibrary() {

Given("'Children from Bullerbyn' book in the library " +

Scenario: not accept back a book which does not belong to the library "and a pretty librarian.");

Given 'Children from Bullerbyn' book has not been borrowed the library

When this book is given back When("this book is borrowed from the library " +

Then the library does not accept it. "and the librarian is blinking at you");

Then("the library doesn't contain it anymore " +
"and the librarian wants to go out with you " +
"but you're already married, so no way.");

@Scenario(pending = true) }
public void shouldNotLendANonexistingBookFromTheLibrary() {) .
Given("empty library"); = @Scenario(pending = true)
Library library = new l’-ibmry()' public void shouldNotLendANonexistingBookFromTheLibrary() {
.]

Book sampleBook = new Book("Children from Bullerbyn"); S Gl L

i) (When("we try to borrow 'Children from Bullerbyn' from the library");
When("we try to borrow 'Children from Bullerbyn' from the library");

library.lend(sampleBook).to(reader); Then("the library doesn't let it to be borrowed.");

}
Then("the library doesn't let it to be borrowed.");
Yy
assertThat(reader.books().size(), 1s(0)); = @Scenario(pending = true)

} public void shouldAcceptBackABookPreviouslyBorrowed() {
Given("'Children from Bullerbyn' has been borrowed from the library");
when("this book is given back");

B . - — — "] 3 5 . "y .
(18 Package Explorer A 5E|Q:> oomE-- - O . Then("the library contains it.");
Finished after 0,314 seconds }
Runs: 11/10 (1 ignored) B Errors: 0 Failures: 1
e — Tumbler report for: Writing scenarios file
> EE]ExampIe models file writer should [Runner: JUnit 4] (0,038 s)
¥ EilJava generator should [Runner: JUnit 4] (0,013 s))
Egenerate only class with proper name when no examples (0,000 s) [
1= generate class with test with proper name and steps for single example (0,006 s) @ 8
Egenerate class with test with proper name and steps for many different examples (0,003 s) 5 o 0

> @java file writer should [Runner: JUnit 4] (0,003 s)

| | |

Given story with some name and scenarios
Should preduce correct scenarlos file contents (checked as a | When scenarios file's content Is generated and re-parsed to
rounctrip) praduce story

Then initial story and parsed story should be equal

Given story with some name and scenarios
create scenarios file from story When scenario writer is called

Then scenarios file should exist

Given story with some name and an scenario with ‘given’
referring to it
Should support story name as wildcard ('$it') In steps When scenarlo Is processad
Then scenarios files content should contaln ‘Glven sample
story'

J 80

J

Glven story with one scenario which passed
store info about passing scenarios in generated file Vihen scenario s processed
Then file contents shauld contain [PASSED)
Given story with one scenario which falled
store Info about falling scenarlos In generated flle Vihen scenarlo Is processed
Then file contents shauld contain [FAILED)
Given story with one scenario which is pending
store info about pending scenarios in generated file When scenario is processed
Then file contents should contain (PENDING]

Oc

rarvies oy Tumplee

How to organize all
these tests

e Tests in the same packages as SUT
VS. separately

e [ests named by the functionality
vS. tests named by tested classes

e Jests’ speed

clicking

o Jestlevels

integration

Test smells

Smells and Heurmléd

e | ong setup - lack of factory method, or perhaps
a problem with the structure of created objects?

e | ong tests - perhaps you're testing more than
one behaviour at a time?

e Many assertions - doesn’t the tested method
have too many responsibilities?

e [00 many test methods in a test class - class
under test has too many responsibilities?

Mamntainable tests

e Reuse assertions, create ,business” assertions

e Reuse object construction methods - don’t be sensitive to changes of
constructors

e Reuse test setup
e T[ests should not depend on environment and order of execution

e Avoid many assertions - when the first one fails, others are not executed
(they could’ve give you a clue about possible reasons)

e Separate assertion from the action to increase readability (or better use
given/when/then pattern)

e Use variables to pass and verify values in tests

e Remove tests ONLY when you remove a functionality or when tests’
responsibilities overlap

Pair programming

http://static.guim.co.uk/sys-images/Guardian/Pix/pictures/201 1/10/25/13 19565246 | 30/Russian-President-Dmitry--007.jpg

http://static.guim.co.uk/sys-images/Guardian/Pix/pictures/2011/10/25/1319565246130/Russian-President-Dmitry--007.jpg
http://static.guim.co.uk/sys-images/Guardian/Pix/pictures/2011/10/25/1319565246130/Russian-President-Dmitry--007.jpg

The biggest challenge for me personally was essentially mourning for
the death of “Programmer Man”.

Programmer Man 1s how | think of myselt when I've got my
headphones 1n, speed metal blaring in my ears, and I'm coding like a
motherfucker. My fingers can’t keep up with my brain. I'm In The
Z.one.

For most of my career, this image 1s what I've considered to be the
zenith. When I come home and was in Programmer Man Mode most of

the day, I feel like I've had a good day.

Pair Programming undeniably killed Programmer Man. This
was a tough adjustment, since I've considered that mode to be my
favorite for so long. I now see, however, that Programmer Man was,
without me knowing it, Technical Debt Man.

http://www.nomachetejuggling.com/2009/02/2 | /i-love-pair-programming/

http://www.nomachetejuggling.com/2009/02/21/i-love-pair-programming/
http://www.nomachetejuggling.com/2009/02/21/i-love-pair-programming/

Don’t be afraid of pair-programming - you're not as good as
you think, but you're not as bad as you fear.

Ron Jeffries

Ok, but how to start doing it?

Comfortable position
Do harder bits in pairs first

Get a shower.

Do it the right way - one person codes,
the other gets the bigger picture.

Switch pairs.

And how to make 1t stick?

2 keyboards

=0 (o s ol
20 @® Q}

Check WhICh settlng flts you best

2 mice

Initially everybody MUST pair. Make it
optional once you know it well.

http://www.nomachetejuggling.com/2011/08/25/mechanics-of-good-pairing/
http://www.nomachetejuggling.com/2011/08/25/mechanics-of-good-pairing/

® Chrome Plik Edycja Widok Historia Zaktadki Okno Pomoc R - amoH | W= == (= czw. 17:20 Pawet Lipinski Q

©
00 0 Jrym— w B y | W A\l | \) | <

ff‘, https://www.google.com/imghp?hl=en&tab=wi

+You Search Images Maps Play YouTube News Gmail Drive Calendar More -

Google

images

Advertising Programs ~ Business Solutions +Google About Google

Ok, but how to start doing it?

Check-in often... clean builds.
Never leave the office

If the build Is broken.

Don’t comment out \J en kl nS cruise-control

failing tests...

gump Team Foundation Server

TeamCIty Continuum HUdSOn

Bamboo

Time-box fixing build
revert if needed.
You’re responsible if your

build broke something.

And how to make 1t stick?

Optimize your building process. Sonar

Lots of tests. Keep your tests fast.

Integration tests.

End-to-end tests.

Notifications which piss you off.

Fancy info radiator.

Thank you!

pawel.lipinski@pragmatists.pl

“#_ PRAGMATISTS

xxxxxx

All pictures were used exclusively to set the presentation context and advertise the ori

mailto:pawel.lipinski@pragmatists.pl
mailto:pawel.lipinski@pragmatists.pl

